MSLS: Applied Computational Life Sciences

Title of project / Thesis	Differentiation of bone marrow cell morphologies using deep neural networks.
Topic / Key words	Medical image analysis, deep learning, unsupervised learning, generative adversarial network
Supervisor	Stefan Glüge
Co-Supervisor	Krzysztof Kryszczuk
External partners	Universitätsspital Zürich
Place(s) of work	Wädenswil
Abstract	The classification of bone marrow (BM) cell cytomorphology, an important corner stone of hematological diagnosis, is still done manually thousands of times every day.
	Deep convolutional neural networks (CNNs) provide state-of-the-art performance for the classification problem of single BM cells [1].
	The project aims to enhance the state-of-the-art of BM cell classification based on a large data set of 171,374 microscopic cytological images taken from BM smears from 945 patients diagnosed with a variety of hematological diseases. The work focuses on a data- centric approach, i.e., rather improve the data-side than experimenting with a variety of model/network architectures.
	Different image augmentation techniques shall be implemented and tested. Amongst other, the generation of "new" images using generative models based on the existing database.
Requirements	 Basic knowledge and willingness to learn the usage of deep learning frameworks such as pytorch, tensorflow etc. Fundamental machine learning knowledge Basic knowledge in computer vision / image analysis Basic knowledge and willingness to learn the usage of unix- based systems and the command line
Comments	[1] Matek, C. et al. (2021). Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set. <i>Blood</i> , 138(20), 1917–1927. https://doi.org/10.1182/blood.2020010568
Date of document	01.12.2022
Contact	glue@zhaw.ch